Pattern Avoidance in Alternating Sign Matrices

نویسنده

  • ROBERT JOHANSSON
چکیده

We generalize the definition of a pattern from permutations to alternating sign matrices. The number of alternating sign matrices avoiding 132 is proved to be counted by the large Schröder numbers, 1, 2, 6, 22, 90, 394 . . .. We give a bijection between 132-avoiding alternating sign matrices and Schröder-paths, which gives a refined enumeration. We also show that the 132, 123avoiding alternating sign matrices are counted by every second Fibonacci number.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Affine Alternating Sign Matrices

An Alternating sign matrix is a square matrix of 0’s, 1’s, and −1’s in which the sum of the entries in each row or column is 1 and the signs of the nonzero entries in each row or column alternate. This paper attempts to define an analogue to alternating sign matrices which is infinite and periodic. After showing the analogue we define shares desirable cahracteristics with alternating sign matri...

متن کامل

Symmetric alternating sign matrices

In this note we consider completions of n×n symmetric (0,−1)-matrices to symmetric alternating sign matrices by replacing certain 0s with +1s. In particular, we prove that any n×n symmetric (0,−1)-matrix that can be completed to an alternating sign matrix by replacing some 0s with +1s can be completed to a symmetric alternating sign matrix. Similarly, any n × n symmetric (0,+1)-matrix that can ...

متن کامل

Alternating Sign Matrices and Descending Plane Partitions

An alternating sign matrix is a square matrix such that (i) all entries are 1,-1, or 0, (ii) every row and column has sum 1, and (iii) in every row and column the nonzero entries alternate in sign. Striking numerical evidence of a connection between these matrices and the descending plane partitions introduced by Andrews (Invent. Math. 53 (1979), 193-225) have been discovered, but attempts to p...

متن کامل

A formula for the doubly refined enumeration of alternating sign matrices

Zeilberger [12] proved the Refined Alternating Sign Matrix Theorem, which gives a product formula, first conjectured by Mills, Robbins and Rumsey [9], for the number of alternating sign matrices with given top row. Stroganov [10] proved an explicit formula for the number of alternating sign matrices with given top and bottom rows. Fischer and Romik [7] considered a different kind of “doubly-ref...

متن کامل

U–turn alternating sign matrices, symplectic shifted tableaux and their weighted enumeration

Alternating sign matrices with a U–turn boundary (UASMs) are a recent generalization of ordinary alternating sign matrices. Here we show that variations of these matrices are in bijective correspondence with certain symplectic shifted tableaux that were recently introduced in the context of a symplectic version of Tokuyama’s deformation of Weyl’s denominator formula. This bijection yields a for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006